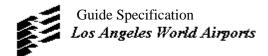


SECTION 23 05 93 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY


- A. Section Includes:
 - 1. Testing, adjusting, and balancing of air systems.
 - 2. Testing, adjusting, and balancing of hydronic systems.
 - 3. Measurement of final operating condition of HVAC systems.
 - 4. Sound measurement of equipment operating conditions.
 - 5. Vibration measurement of equipment operating conditions.
 - 6. Testing, adjusting and balancing of smoke control systems.

1.2 REFERENCES

- A. Associated Air Balance Council (AABC):
 - 1. AABC MN-1 National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems.
- B. National Environmental Balancing Bureau (NEBB):
 - 1. Procedural Standard for Testing, Adjusting and Balancing of Environmental Systems. Latest Edition.
- C. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):
 - 1. ASHRAE 111 Practices for Measurement, Testing, Adjusting and Balancing of Building Heating, Ventilation, Air-Conditioning and Refrigeration Systems.
 - 2. ASHRAE 62.1, Section 7.2.2.
 - 3. ASHRAE 90.1, Section 6.2.3 System Balancing.

1.3 SUBMITTALS

- A. Prior to commencing Work, submit proof of latest calibration date of each instrument.
- B. Test Reports: Indicate data on AABC or NEBB Total System Balance forms.
- C. Field Reports: Indicate deficiencies preventing proper testing, adjusting, and balancing of systems and equipment.
- D. Prior to commencing Work, submit report forms or outlines indicating adjusting, balancing, and equipment data required. Include detailed procedures, agenda, sample report forms and copy of AABC National Project Performance Guaranty.

- E. Submit draft copies of report for review prior to final acceptance of Project.
- F. Furnish printed reports (not hand-written) in binder manuals, complete with table of contents page and indexing tabs, with cover identification at front and side. Include set of reduced drawings with air outlets and equipment identified to correspond with data sheets, and indicating thermostat locations.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: Furnish final copy of testing, adjusting, and balancing report inclusion in operating and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Prior to commencing Work, calibrate each instrument to be used. Upon completing Work, recalibrate each instrument to assure reliability.

1.6 QUALIFICATIONS

A. Agency: Company specializing in testing, adjusting, and balancing of systems specified in this section with minimum five years documented experience certified by AABC or NEBB.

1.7 WARRANTY

- A. National Project Performance Guarantee: Provide a guarantee AABC or NEBB will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee includes the following provisions:
 - 1. The certified TAB firm has tested and balanced systems according to the Contract Documents.
 - 2. Systems are balanced to optimum performance capabilities within design and installation limits.
 - 3. Warranty Period: Five (5) years.
- B. Special Guarantee: Provide a guarantee AABC or NEBB will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee shall include the following provisions:
 - 1. The certified TAB firm has tested and balanced systems according to the Contract Documents.
 - 2. Systems are balanced to optimum performance capabilities within design and installation limits.
 - 3. Warranty Period: Five (5) years.

PART 2 - PRODUCTS

Not Used.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify systems are complete and operable before commencing work. Verify the following:
 - 1. Systems are started and operating in safe and normal condition.
 - 2. Temperature control systems are installed complete and operable.
 - 3. Proper thermal overload protection is in place for electrical equipment.
 - 4. Final filters are clean and in place. If required, install temporary media in addition to final filters.
 - 5. Duct systems are clean of debris.
 - 6. Fans are rotating correctly.
 - 7. Fire and volume dampers are in place and open.
 - 8. Air coil fins are cleaned and combed.
 - 9. Access doors are closed and duct end caps are in place.
 - 10. Air outlets are installed and connected.
 - 11. Duct system leakage is minimized.
 - 12. Hydronic systems are flushed, filled, and vented.
 - 13. Pumps are rotating correctly.
 - 14. Proper strainer baskets are clean and in place or in normal position.
 - 15. Service and balancing valves are open.
 - 16. Drains are flushed and clean.

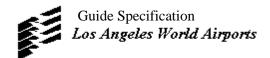
3.2 **PREPARATION**

- A. Furnish instruments required for testing, adjusting, and balancing operations.
- B. Make instruments available to LAWA to facilitate spot checks during testing.

3.3 INSTALLATION TOLERANCES

- A. Air Handling Systems: Adjust to within plus or minus 10 percent of design.
- B. Air Outlets and Inlets: Adjust total to within plus 10 percent and minus 5 percent of design to space. Adjust outlets and inlets in space to within plus or minus 10 percent of design.
- C. Hydronic Systems: Adjust to within plus or minus 10 percent of design.

3.4 ADJUSTING


A. Verify recorded data represents actual measured or observed conditions.

- B. Permanently mark settings of valves, dampers, and other adjustment devices allowing settings to be restored. Set and lock memory stops.
- C. After adjustment, take measurements to verify balance has not been disrupted. If disrupted, verify correcting adjustments have been made.
- D. Report defects and deficiencies noted during performance of services, preventing system balance.
- E. Leave systems in proper working order, replacing belt guards, closing access doors, closing doors to electrical switch boxes, and restoring thermostats to specified settings.
- F. At final inspection, recheck random selections of data recorded in report. Recheck points or areas as selected and witnessed by LAWA.
- G. Check and adjust systems approximately six months after final acceptance and submit report.

3.5 AIR SYSTEM PROCEDURE

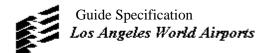
- A. Adjust air handling and distribution systems to obtain required or design supply, return, and exhaust air quantities.
- B. Make air quantity measurements in main ducts by Pitot tube traverse of entire cross sectional area of duct.
- C. Measure air quantities at air inlets and outlets.
- D. Adjust distribution system to obtain uniform space temperatures free from objectionable drafts.
- E. Use volume control devices to regulate air quantities only to extent adjustments do not create objectionable air motion or sound levels. Effect volume control by using volume dampers located in ducts.
- F. Vary total system air quantities by adjustment of fan speeds. Provide sheave drive changes if applicable to vary fan speed. Vary branch air quantities by damper regulation.
- G. Provide system schematic with required and actual air quantities recorded at each outlet or inlet.
- H. Measure static air pressure conditions on air supply units, including filter and coil pressure drops, and total pressure across fan. Make allowances for 50 percent loading of filters.
- I. Adjust outside air automatic dampers, outside air, return air, and exhaust dampers for design conditions.
- J. Measure temperature conditions across outside air, return air, and exhaust dampers to check leakage.

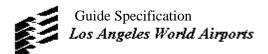
- K. At modulating damper locations, take measurements and balance at extreme conditions. Balance variable volume systems at maximum airflow rate, full cooling, and at minimum airflow rate, full heating.
- L. Measure building static pressure and adjust supply, return, and exhaust air systems to obtain required relationship between each to maintain approximately 0.05 inches positive static pressure near building entries.
- M. Check multi-zone units for motorized damper leakage. Adjust air quantities with mixing dampers set first for cooling, then heating, then modulating.
- N. For variable air volume system powered units set volume controller to airflow setting indicated. Confirm connections properly made and confirm proper operation for automatic variable-air-volume temperature control.
- O. On fan powered VAV boxes, adjust airflow switches for proper operation.

3.6 WATER SYSTEM PROCEDURE

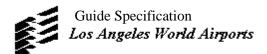
- A. Adjust water systems, after air balancing, to obtain design quantities.
- B. Use calibrated Venturi tubes, orifices, or other metered fittings and pressure gauges to determine flow rates for system balance. Where flow-metering devices are not installed, base flow balance on temperature difference across various heat transfer elements in system.
- C. Adjust systems to obtain prescribed pressure drops and flows through heat transfer elements prior to thermal testing. Perform balancing by measurement of temperature differential in conjunction with air balancing.
- D. Effect system balance with automatic control valves fully open or in normal position to heat transfer elements.
- E. Effect adjustment of water distribution systems by means of balancing cocks, valves, and fittings. Do not use service or shut-off valves for balancing unless indexed for balance point.
- F. Where available pump capacity is less than total flow requirements or individual system parts, simulate full flow in one part by temporary restriction of flow to other parts.

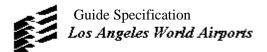
3.7 PROCEDURES FOR SMOKE-CONTROL SYSTEM TESTING

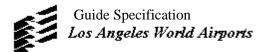

- A. Before testing smoke-control systems, verify that construction is complete and verify the integrity of each smoke-control zone boundary. Verify that windows and doors are closed and that applicable safing, gasket, and sealants are installed.
- B. Measure and record wind speed and direction, outside-air temperature, and relative humidity on each test day.
- C. Measure, adjust, and record airflow of each smoke-control system with all fans that are a part of the system.

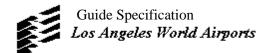

- D. Measure, adjust, and record the airflow of each fan. For ducted systems, measure the fan airflow by duct Pitot-tube traverse.
- E. After air balancing is complete, perform the pressurization testing for each smoke-control zone.
- F. Operational Tests:
 - 1. Check the proper activation of each zoned smoke-control system in response to all means of activation, both automatic and manual.
 - 2. Check automatic activation in response to fire alarm signals received from the building's fire alarm and detection system. Initiate a separate alarm for each means of activation to ensure that the proper operation of the correct zoned smoke-control system occurs.
 - 3. Check and record the proper operation of fans, dampers, and related equipment for each separate zone of the smoke-control system.
- G. Conduct additional tests required by authorities having jurisdiction. Unless required by authorities having jurisdiction, perform testing without the use of smoke or products that simulate smoke.
- H. Prepare a complete report of observations, measurements, and deficiencies.

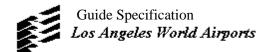
3.8 SCHEDULES


- A. Equipment Requiring Testing, Adjusting, and Balancing:
 - 1. Pumps.
 - 2. Air Cooled Refrigerant Condensers/Condensing Units.
 - 3. Packaged Roof Top Heating/Cooling Units.
 - 4. Packaged Terminal Air Conditioning Units.
 - 5. Unit Air Conditioners.
 - 6. Computer Room Air Conditioning Units.
 - 7. Air Coils.
 - 8. Evaporative Humidifier.
 - 9. Fan Coil Units.
 - 10. Air Handling Units.
 - 11. Fans.
 - 12. Air Filters.
 - 13. Air Terminal Units.
 - 14. Air Inlets and Outlets.
 - 15. Heat Exchangers.


- B. Report Forms
 - 1. Title Page:
 - a. Name of Testing, Adjusting, and Balancing Agency
 - b. Address of Testing, Adjusting, and Balancing Agency
 - c. Telephone and facsimile numbers of Testing, Adjusting, and Balancing Agency
 - d. Project name
 - e. Project location
 - f. Project Architect
 - g. Project Engineer
 - h. Project Contractor
 - i. Project altitude
 - j. Report date
 - 2. Summary Comments:
 - a. Design versus final performance
 - b. Notable characteristics of system
 - c. Description of systems operation sequence
 - d. Summary of outdoor and exhaust flows to indicate building pressurization
 - e. Nomenclature used throughout report
 - f. Test conditions
 - 3. Instrument List:
 - a. Instrument
 - b. Manufacturer
 - c. Model number
 - d. Serial number
 - e. Range
 - f. Calibration date
 - 4. Electric Motors:
 - a. Manufacturer
 - b. Model/Frame
 - c. HP/BHP and kW
 - d. Phase, voltage, amperage; nameplate, actual, no load
 - e. RPM
 - f. Service factor
 - g. Starter size, rating, heater elements
 - h. Sheave Make/Size/Bore
 - 5. V-Belt Drive:
 - a. Identification/location
 - b. Required driven RPM


- c. Driven sheave, diameter and RPM
- d. Belt, size and quantity
- e. Motor sheave diameter and RPM
- f. Center to center distance, maximum, minimum, and actual
- 6. Pump Data:
 - a. Identification/number
 - b. Manufacturer
 - c. Size/model
 - d. Impeller
 - e. Service
 - f. Design flow rate, pressure drop, BHP and kW
 - g. Actual flow rate, pressure drop, BHP and kW
 - h. Discharge pressure
 - i. Suction pressure
 - j. Total operating head pressure
 - k. Shut off, discharge and suction pressures
 - 1. Shut off, total head pressure
- 7. Air Cooled Condenser/Condensing Unit:
 - a. Identification/number
 - b. Location
 - c. Manufacturer
 - d. Model number
 - e. Serial number
 - f. Entering DB air temperature, design and actual
 - g. Leaving DB air temperature, design and actual
 - h. Number of compressors
- 8. Heat Exchanger:
 - a. Identification/number
 - b. Location
 - c. Service
 - d. Manufacturer
 - e. Model number
 - f. Serial number
 - g. Steam pressure, design and actual
 - h. Primary water entering temperature, design and actual
 - i. Primary water leaving temperature, design and actual
 - j. Primary water flow, design and actual
 - k. Primary water pressure drop, design and actual
 - 1. Secondary water leaving temperature, design and actual


- m. Secondary water leaving temperature, design and actual
- n. Secondary water flow, design and actual
- o. Secondary water pressure drop, design and actual
- 9. Cooling Coil Data:
 - a. Identification/number
 - b. Location
 - c. Service
 - d. Manufacturer
 - e. Air flow, design and actual
 - f. Entering air DB temperature, design and actual
 - g. Entering air WB temperature, design and actual
 - h. Leaving air DB temperature, design and actual
 - i. Leaving air WB temperature, design and actual
 - j. Water flow, design and actual
 - k. Water pressure drop, design and actual
 - 1. Entering water temperature, design and actual
 - m. Leaving water temperature, design and actual
 - n. Saturated suction temperature, design and actual
 - o. Air pressure drop, design and actual
- 10. Heating Coil Data:
 - a. Identification/number
 - b. Location
 - c. Service
 - d. Manufacturer
 - e. Air flow, design and actual
 - f. Water flow, design and actual
 - g. Water pressure drop, design and actual
 - h. Entering water temperature, design and actual
 - i. Leaving water temperature, design and actual
 - j. Entering air temperature, design and actual
 - k. Leaving air temperature, design and actual
 - 1. Air pressure drop, design and actual
- 11. Unit Ventilator and Fan Coil Data:
 - a. Manufacturer
 - b. Identification/number
 - c. Location
 - d. Model number
 - e. Size
 - f. Air flow, design and actual


- g. Water flow, design and actual
- h. Water pressure drop, design and actual
- i. Entering water temperature, design and actual
- j. Leaving water temperature, design and actual
- k. Entering air temperature, design and actual
- 1. Leaving air temperature, design and actual
- 12. Air Moving Equipment:
 - a. Location
 - b. Manufacturer
 - c. Model number
 - d. Serial number
 - e. Arrangement/Class/Discharge
 - f. Air flow, specified and actual
 - g. Return air flow, specified and actual
 - h. Outside air flow, specified and actual
 - i. Total static pressure (total external), specified and actual
 - j. Inlet pressure
 - k. Discharge pressure
 - 1. Sheave Make/Size/Bore
 - m. Number of Belts/Make/Size
 - n. Fan RPM
- 13. Return Air/Outside Air Data:
 - a. Identification/location
 - b. Design air flow
 - c. Actual air flow
 - d. Design return air flow
 - e. Actual return air flow
 - f. Design outside air flow
 - g. Actual outside air flow
 - h. Return air temperature
 - i. Outside air temperature
 - j. Required mixed air temperature
 - k. Actual mixed air temperature
 - 1. Design outside/return air ratio
 - m. Actual outside/return air ratio
- 14. Exhaust Fan Data:
 - a. Location
 - b. Manufacturer
 - c. Model number

- d. Serial number
- e. Air flow, specified and actual
- f. Total static pressure (total external), specified and actual
- g. Inlet pressure
- h. Discharge pressure
- i. Sheave Make/Size/Bore
- j. Number of Belts/Make/Size
- k. Fan RPM
- 15. Duct Traverse:
 - a. System zone/branch
 - b. Duct size
 - c. Area
 - d. Design velocity
 - e. Design air flow
 - f. Test velocity
 - g. Test air flow
 - h. Duct static pressure
 - i. Air temperature
 - j. Air correction factor
- 16. Duct Leak Test:
 - a. Description of ductwork under test
 - b. Duct design operating pressure
 - c. Duct design test static pressure
 - d. Duct capacity, air flow
 - e. Maximum allowable leakage duct capacity times leak factor
 - f. Test apparatus
 - 1) Blower
 - 2) Orifice, tube size
 - 3) Orifice size
 - 4) Calibrated
 - g. Test static pressure
 - h. Test orifice differential pressure
 - i. Leakage
- 17. Air Monitoring Station Data:
 - a. Identification/location
 - b. System
 - c. Size
 - d. Area
 - e. Design velocity

- f. Design air flow
- g. Test velocity
- h. Test air flow
- 18. Flow Measuring Station:
 - a. Identification/number
 - b. Location
 - c. Size
 - d. Manufacturer
 - e. Model number
 - f. Serial number
 - g. Design Flow rate
 - h. Design pressure drop
 - i. Actual/final pressure drop
 - j. Actual/final flow rate
 - k. Station calibrated setting
- 19. Terminal Unit Data:
 - a. Manufacturer
 - b. Type, constant, variable, single, dual duct
 - c. Identification/number
 - d. Location
 - e. Model number
 - f. Size
 - g. Minimum static pressure
 - h. Minimum design air flow
 - i. Maximum design air flow
 - j. Maximum actual air flow
 - k. Inlet static pressure
- 20. Air Distribution Test Sheet:
 - a. Air terminal number
 - b. Room number/location
 - c. Terminal type
 - d. Terminal size
 - e. Area factor
 - f. Design velocity
 - g. Design air flow
 - h. Test (final) velocity
 - i. Test (final) air flow
 - j. Percent of design air flow

- 21. Sound Level Report:
 - a. Location
 - b. Octave bands equipment off
 - c. Octave bands equipment on
 - d. RC level equipment on
- 22. Vibration Test:
 - a. Location of points:
 - 1) Fan bearing, drive end
 - 2) Fan bearing, opposite end
 - 3) Motor bearing, center (when applicable)
 - 4) Motor bearing, drive end
 - 5) Motor bearing, opposite end
 - 6) Casing (bottom or top)
 - 7) Casing (side)
 - 8) Duct after flexible connection (discharge)
 - 9) Duct after flexible connection (suction)
 - b. Test readings:
 - 1) Horizontal, velocity and displacement
 - 2) Vertical, velocity and displacement
 - 3) Axial, velocity and displacement
 - c. Normally acceptable readings, velocity and acceleration
 - d. Unusual conditions at time of test
 - e. Vibration source (when non-complying)

END OF SECTION 23 05 93